3.389 \(\int \frac{x^5}{(a+b x^3) (c+d x^3)^{3/2}} \, dx\)

Optimal. Leaf size=82 \[ \frac{2 a \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 \sqrt{b} (b c-a d)^{3/2}}-\frac{2 c}{3 d \sqrt{c+d x^3} (b c-a d)} \]

[Out]

(-2*c)/(3*d*(b*c - a*d)*Sqrt[c + d*x^3]) + (2*a*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(3*Sqrt[b]
*(b*c - a*d)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0736587, antiderivative size = 82, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {446, 78, 63, 208} \[ \frac{2 a \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 \sqrt{b} (b c-a d)^{3/2}}-\frac{2 c}{3 d \sqrt{c+d x^3} (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[x^5/((a + b*x^3)*(c + d*x^3)^(3/2)),x]

[Out]

(-2*c)/(3*d*(b*c - a*d)*Sqrt[c + d*x^3]) + (2*a*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(3*Sqrt[b]
*(b*c - a*d)^(3/2))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^5}{\left (a+b x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{x}{(a+b x) (c+d x)^{3/2}} \, dx,x,x^3\right )\\ &=-\frac{2 c}{3 d (b c-a d) \sqrt{c+d x^3}}-\frac{a \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,x^3\right )}{3 (b c-a d)}\\ &=-\frac{2 c}{3 d (b c-a d) \sqrt{c+d x^3}}-\frac{(2 a) \operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d x^3}\right )}{3 d (b c-a d)}\\ &=-\frac{2 c}{3 d (b c-a d) \sqrt{c+d x^3}}+\frac{2 a \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 \sqrt{b} (b c-a d)^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0857927, size = 88, normalized size = 1.07 \[ \frac{2 \left (\frac{c (a d-b c)}{d \sqrt{c+d x^3}}+\frac{a \sqrt{b c-a d} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{\sqrt{b}}\right )}{3 (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^5/((a + b*x^3)*(c + d*x^3)^(3/2)),x]

[Out]

(2*((c*(-(b*c) + a*d))/(d*Sqrt[c + d*x^3]) + (a*Sqrt[b*c - a*d]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a
*d]])/Sqrt[b]))/(3*(b*c - a*d)^2)

________________________________________________________________________________________

Maple [C]  time = 0.007, size = 487, normalized size = 5.9 \begin{align*} -{\frac{2}{3\,bd}{\frac{1}{\sqrt{d{x}^{3}+c}}}}-{\frac{a}{b} \left ( -{\frac{2}{3\,ad-3\,bc}{\frac{1}{\sqrt{ \left ({x}^{3}+{\frac{c}{d}} \right ) d}}}}-{\frac{{\frac{i}{3}}b\sqrt{2}}{{d}^{2}}\sum _{{\it \_alpha}={\it RootOf} \left ( b{{\it \_Z}}^{3}+a \right ) }{\frac{1}{ \left ( -ad+bc \right ) \left ( ad-bc \right ) }\sqrt [3]{-{d}^{2}c}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-{d}^{2}c}} \right ) \left ( -3\,\sqrt [3]{-{d}^{2}c}+i\sqrt{3}\sqrt [3]{-{d}^{2}c} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}} \left ( i\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,\sqrt{3}d-i\sqrt{3} \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}+2\,{{\it \_alpha}}^{2}{d}^{2}-\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,d- \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}d \left ( x+{\frac{1}{2\,d}\sqrt [3]{-{d}^{2}c}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}},{\frac{b}{2\,d \left ( ad-bc \right ) } \left ( 2\,i\sqrt [3]{-{d}^{2}c}\sqrt{3}{{\it \_alpha}}^{2}d-i \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}\sqrt{3}{\it \_alpha}+i\sqrt{3}cd-3\, \left ( -{d}^{2}c \right ) ^{2/3}{\it \_alpha}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c} \left ( -{\frac{3}{2\,d}\sqrt [3]{-{d}^{2}c}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(b*x^3+a)/(d*x^3+c)^(3/2),x)

[Out]

-2/3/b/d/(d*x^3+c)^(1/2)-a/b*(-2/3/(a*d-b*c)/((x^3+1/d*c)*d)^(1/2)-1/3*I/d^2*b*2^(1/2)*sum(1/(-a*d+b*c)/(a*d-b
*c)*(-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1
/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^
(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^
2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^
(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),1/2*b/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alp
ha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/(a*d-b*c),(I*3^(1/2)/d*(-d
^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*b+a)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(b*x^3+a)/(d*x^3+c)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.09247, size = 682, normalized size = 8.32 \begin{align*} \left [-\frac{{\left (a d^{2} x^{3} + a c d\right )} \sqrt{b^{2} c - a b d} \log \left (\frac{b d x^{3} + 2 \, b c - a d - 2 \, \sqrt{d x^{3} + c} \sqrt{b^{2} c - a b d}}{b x^{3} + a}\right ) + 2 \,{\left (b^{2} c^{2} - a b c d\right )} \sqrt{d x^{3} + c}}{3 \,{\left (b^{3} c^{3} d - 2 \, a b^{2} c^{2} d^{2} + a^{2} b c d^{3} +{\left (b^{3} c^{2} d^{2} - 2 \, a b^{2} c d^{3} + a^{2} b d^{4}\right )} x^{3}\right )}}, -\frac{2 \,{\left ({\left (a d^{2} x^{3} + a c d\right )} \sqrt{-b^{2} c + a b d} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-b^{2} c + a b d}}{b d x^{3} + b c}\right ) +{\left (b^{2} c^{2} - a b c d\right )} \sqrt{d x^{3} + c}\right )}}{3 \,{\left (b^{3} c^{3} d - 2 \, a b^{2} c^{2} d^{2} + a^{2} b c d^{3} +{\left (b^{3} c^{2} d^{2} - 2 \, a b^{2} c d^{3} + a^{2} b d^{4}\right )} x^{3}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(b*x^3+a)/(d*x^3+c)^(3/2),x, algorithm="fricas")

[Out]

[-1/3*((a*d^2*x^3 + a*c*d)*sqrt(b^2*c - a*b*d)*log((b*d*x^3 + 2*b*c - a*d - 2*sqrt(d*x^3 + c)*sqrt(b^2*c - a*b
*d))/(b*x^3 + a)) + 2*(b^2*c^2 - a*b*c*d)*sqrt(d*x^3 + c))/(b^3*c^3*d - 2*a*b^2*c^2*d^2 + a^2*b*c*d^3 + (b^3*c
^2*d^2 - 2*a*b^2*c*d^3 + a^2*b*d^4)*x^3), -2/3*((a*d^2*x^3 + a*c*d)*sqrt(-b^2*c + a*b*d)*arctan(sqrt(d*x^3 + c
)*sqrt(-b^2*c + a*b*d)/(b*d*x^3 + b*c)) + (b^2*c^2 - a*b*c*d)*sqrt(d*x^3 + c))/(b^3*c^3*d - 2*a*b^2*c^2*d^2 +
a^2*b*c*d^3 + (b^3*c^2*d^2 - 2*a*b^2*c*d^3 + a^2*b*d^4)*x^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{5}}{\left (a + b x^{3}\right ) \left (c + d x^{3}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(b*x**3+a)/(d*x**3+c)**(3/2),x)

[Out]

Integral(x**5/((a + b*x**3)*(c + d*x**3)**(3/2)), x)

________________________________________________________________________________________

Giac [A]  time = 1.12362, size = 105, normalized size = 1.28 \begin{align*} -\frac{2 \,{\left (\frac{a d \arctan \left (\frac{\sqrt{d x^{3} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{\sqrt{-b^{2} c + a b d}{\left (b c - a d\right )}} + \frac{c}{\sqrt{d x^{3} + c}{\left (b c - a d\right )}}\right )}}{3 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(b*x^3+a)/(d*x^3+c)^(3/2),x, algorithm="giac")

[Out]

-2/3*(a*d*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*(b*c - a*d)) + c/(sqrt(d*x^3 +
c)*(b*c - a*d)))/d